Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.837
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612415

RESUMO

The endogenous cannabinoid system (ECS) plays a critical role in the regulation of various physiological functions, including sleep, mood, and neuroinflammation. Phytocannabinoids such as Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinomimimetics, and some N-acylethanolamides, particularly palmitoyethanolamide, have emerged as potential therapeutic agents for the management of sleep disorders. THC, the psychoactive component of cannabis, may initially promote sleep, but, in the long term, alters sleep architecture, while CBD shows promise in improving sleep quality without psychoactive effects. Clinical studies suggest that CBD modulates endocannabinoid signaling through several receptor sites, offering a multifaceted approach to sleep regulation. Similarly, palmitoylethanolamide (PEA), in addition to interacting with the endocannabinoid system, acts as an agonist on peroxisome proliferator-activated receptors (PPARs). The favorable safety profile of CBD and PEA and the potential for long-term use make them an attractive alternative to conventional pharmacotherapy. The integration of the latter two compounds into comprehensive treatment strategies, together with cognitive-behavioral therapy for insomnia (CBT-I), represents a holistic approach to address the multifactorial nature of sleep disorders. Further research is needed to establish the optimal dosage, safety, and efficacy in different patient populations, but the therapeutic potential of CBD and PEA offers hope for improved sleep quality and general well-being.


Assuntos
Canabidiol , Canabinoides , Transtornos do Sono-Vigília , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Endocanabinoides , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Sono
2.
Pharmacol Rep ; 76(2): 223-234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457018

RESUMO

Glioblastoma (GBM) is the most prevalent primary malignant tumor of the nervous system. While the treatment of other neoplasms is increasingly more efficacious the median survival rate of GBM patients remains low and equals about 14 months. Due to this fact, there are intensive efforts to find drugs that would help combat GBM. Nowadays cannabinoids are becoming more and more important in the field of cancer and not only because of their properties of antiemetic drugs during chemotherapy. These compounds may have a direct cytotoxic effect on cancer cells. Studies indicate GBM has disturbances in the endocannabinoid system-changes in cannabinoid metabolism as well as in the cannabinoid receptor expression. The GBM cells show expression of cannabinoid receptors 1 and 2 (CB1R and CB2R), which mediate various actions of cannabinoids. Through these receptors, cannabinoids inhibit the proliferation and invasion of GBM cells, along with changing their morphology. Cannabinoids also induce an intrinsic pathway of apoptosis in the tumor. Hence the use of cannabinoids in the treatment of GBM may be beneficial to the patients. So far, studies focusing on using cannabinoids in GBM therapy are mainly preclinical and involve cell lines and mice. The results are promising and show cannabinoids inhibit GBM growth. Several clinical studies are also being carried out. The preliminary results show good tolerance of cannabinoids and prolonged survival after administration of these drugs. In this review, we describe the impact of cannabinoids on GBM and glioma cells in vitro and in animal studies. We also provide overview of clinical trials on using cannabinoids in the treatment of GBM.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Canabinoides , Glioblastoma , Glioma , Humanos , Camundongos , Animais , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabinoides/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Endocanabinoides/farmacologia , Antineoplásicos/farmacologia , Neoplasias Encefálicas/patologia
3.
Basic Clin Pharmacol Toxicol ; 134(5): 574-601, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477419

RESUMO

Studies have demonstrated the neuroprotective effect of cannabidiol (CBD) and other Cannabis sativa L. derivatives on diseases of the central nervous system caused by their direct or indirect interaction with endocannabinoid system-related receptors and other molecular targets, such as the 5-HT1A receptor, which is a potential pharmacological target of CBD. Interestingly, CBD binding with the 5-HT1A receptor may be suitable for the treatment of epilepsies, parkinsonian syndromes and amyotrophic lateral sclerosis, in which the 5-HT1A serotonergic receptor plays a key role. The aim of this review was to provide an overview of cannabinoid effects on neurological disorders, such as epilepsy, multiple sclerosis and Parkinson's diseases, and discuss their possible mechanism of action, highlighting interactions with molecular targets and the potential neuroprotective effects of phytocannabinoids. CBD has been shown to have significant therapeutic effects on epilepsy and Parkinson's disease, while nabiximols contribute to a reduction in spasticity and are a frequent option for the treatment of multiple sclerosis. Although there are multiple theories on the therapeutic potential of cannabinoids for neurological disorders, substantially greater progress in the search for strong scientific evidence of their pharmacological effectiveness is needed.


Assuntos
Canabidiol , Canabinoides , Epilepsia , Transtornos Mentais , Esclerose Múltipla , Doença de Parkinson , Humanos , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Receptor 5-HT1A de Serotonina/uso terapêutico , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Epilepsia/tratamento farmacológico , Transtornos Mentais/tratamento farmacológico , Comorbidade
4.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542186

RESUMO

Over the past few decades, many current uses for cannabinoids have been described, ranging from controlling epilepsy to neuropathic pain and anxiety treatment. Medicines containing cannabinoids have been approved by both the FDA and the EMA for the control of specific diseases for which there are few alternatives. However, the molecular-level mechanism of action of cannabinoids is still poorly understood. Recently, cannabinoids have been shown to interact with autotaxin (ATX), a secreted lysophospholipase D enzyme responsible for catalyzing lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a pleiotropic growth factor that interacts with LPA receptors. In addition, a high-resolution structure of ATX in complex with THC has recently been published, accompanied by biochemical studies investigating this interaction. Due to their LPA-like structure, endocannabinoids have been shown to interact with ATX in a less potent manner. This finding opens new areas of research regarding cannabinoids and endocannabinoids, as it could establish the effect of these compounds at the molecular level, particularly in relation to inflammation, which cannot be explained by the interaction with CB1 and CB2 receptors alone. Further research is needed to elucidate the mechanism behind the interaction between cannabinoids and endocannabinoids in humans and to fully explore the therapeutic potential of such approaches.


Assuntos
Canabinoides , Maconha Medicinal , Humanos , Endocanabinoides , Diester Fosfórico Hidrolases/metabolismo , Lisofosfolipídeos/metabolismo , Canabinoides/farmacologia , Canabinoides/uso terapêutico
5.
Sci Rep ; 14(1): 6515, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499634

RESUMO

Human pancreatic ductal adenocarcinoma (PDAC) is a highly malignant and lethal tumor of the exocrine pancreas. Cannabinoids extracted from the hemp plant Cannabis sativa have been suggested as a potential therapeutic agent in several human tumors. However, the anti-tumor effect of cannabinoids on human PDAC is not entirely clarified. In this study, the anti-proliferative and apoptotic effect of cannabinoid solution (THC:CBD at 1:6) at a dose of 1, 5, and 10 mg/kg body weight compared to the negative control (sesame oil) and positive control (5-fluorouracil) was investigated in human PDAC xenograft nude mice model. The findings showed that cannabinoids significantly decreased the mitotic cells and mitotic/apoptotic ratio, meanwhile dramatically increased the apoptotic cells. Parallelly, cannabinoids significantly downregulated Ki-67 and PCNA expression levels. Interestingly, cannabinoids upregulated BAX, BAX/BCL-2 ratio, and Caspase-3, meanwhile, downregulated BCL-2 expression level and could not change Caspase-8 expression level. These findings suggest that cannabinoid solution (THC:CBD at 1:6) could inhibit proliferation and induce apoptosis in human PDAC xenograft models. Cannabinoids, including THC:CBD, should be further studied for use as the potent PDCA therapeutic agent in humans.


Assuntos
Canabinoides , Cannabis , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Camundongos Nus , Xenoenxertos , Proteína X Associada a bcl-2 , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2
6.
Cells ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534310

RESUMO

Cannabinoids have shown potential in drug-resistant epilepsy treatment; however, we lack knowledge on which cannabinoid(s) to use, dosing, and their pharmacological targets. This study investigated (i) the anticonvulsant effect of Cannabidiol (CBD) alone and (ii) in combination with Delta-9 Tetrahydrocannabinol (Δ9-THC), as well as (iii) the serotonin (5-HT)1A receptor's role in CBD's mechanism of action. Seizure activity, induced by 4-aminopyridine, was measured by extracellular field recordings in cortex layer 2/3 of mouse brain slices. The anticonvulsant effect of 10, 30, and 100 µM CBD alone and combined with Δ9-THC was evaluated. To examine CBD's mechanism of action, slices were pre-treated with a 5-HT1A receptor antagonist before CBD's effect was evaluated. An amount of ≥30 µM CBD alone exerted significant anticonvulsant effects while 10 µM CBD did not. However, 10 µM CBD combined with low-dose Δ9-THC (20:3 ratio) displayed significantly greater anticonvulsant effects than either phytocannabinoid alone. Furthermore, blocking 5-HT1A receptors before CBD application significantly abolished CBD's effects. Thus, our results demonstrate the efficacy of low-dose CBD and Δ9-THC combined and that CBD exerts its effects, at least in part, through 5-HT1A receptors. These results could address drug-resistance while providing insight into CBD's mechanism of action, laying the groundwork for further testing of cannabinoids as anticonvulsants.


Assuntos
Canabidiol , Canabinoides , Neocórtex , Camundongos , Animais , Canabidiol/farmacologia , Anticonvulsivantes/uso terapêutico , Dronabinol , Receptor 5-HT1A de Serotonina , Canabinoides/uso terapêutico , Serotonina
7.
Biochem Pharmacol ; 222: 116082, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438052

RESUMO

Toll-like receptors (TLRs) have become a focus in biomedicine and biomedical research given the roles of this unique family of innate immune proteins in immune activation, infection, and autoimmunity. It is evident that TLR dysregulation, and subsequent alterations in TLR-mediated inflammatory signalling, can contribute to disease pathogenesis, and TLR targeted therapies are in development. This review highlights evidence that cannabinoids are key regulators of TLR signalling. Cannabinoids include component of the plant Cannabis sativa L. (C. sativa), synthetic and endogenous ligands, and overall represent a class of compounds whose therapeutic potential and mechanism of action continues to be elucidated. Cannabinoid-based medicines are in the clinic, and are furthermore under intense investigation for broad clinical development to manage symptoms of a range of disorders. In this review, we present an overview of research evidence that signalling linked to a range of TLRs is targeted by cannabinoids, and such cannabinoid mediated effects represent therapeutic avenues for further investigation. First, we provide an overview of TLRs, adaptors and key signalling events, alongside a summary of evidence that TLRs are linked to disease pathologies. Next, we discuss the cannabinoids system and the development of cannabinoid-based therapeutics. Finally, for the bulk of this review, we systematically outline the evidence that cannabinoids (plant-derived cannabinoids, synthetic cannabinoids, and endogenous cannabinoid ligands) can cross-talk with innate immune signalling governed by TLRs, focusing specifically on each member of the TLR family. Cannabinoids should be considered as key regulators of signalling controlled by TLRs, and such regulation should be a major focus in terms of the anti-inflammatory propensity of the cannabinoid system.


Assuntos
Canabinoides , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabinoides/metabolismo , Receptores Toll-Like , Transdução de Sinais , Endocanabinoides , Moduladores de Receptores de Canabinoides , Ligantes , Receptores de Canabinoides
8.
Sci Rep ; 14(1): 5782, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461339

RESUMO

To test the hypothesis that genetic and pharmacological modulation of the classical cannabinoid type 1 (CB1) and 2 (CB2) receptors attenuate cancer-induced bone pain, we searched Medline, Web of Science and Scopus for relevant skeletal and non-skeletal cancer studies from inception to July 28, 2022. We identified 29 animal and 35 human studies. In mice, a meta-analysis of pooled studies showed that treatment of osteolysis-bearing males with the endocannabinoids AEA and 2-AG (mean difference [MD] - 24.83, 95% confidence interval [95%CI] - 34.89, - 14.76, p < 0.00001) or the synthetic cannabinoid (CB) agonists ACPA, WIN55,212-2, CP55,940 (CB1/2-non-selective) and AM1241 (CB2-selective) (MD - 28.73, 95%CI - 45.43, - 12.02, p = 0.0008) are associated with significant reduction in paw withdrawal frequency. Consistently, the synthetic agonists AM1241 and JWH015 (CB2-selective) increased paw withdrawal threshold (MD 0.89, 95%CI 0.79, 0.99, p < 0.00001), and ACEA (CB1-selective), AM1241 and JWH015 (CB2-selective) reduced spontaneous flinches (MD - 4.85, 95%CI - 6.74, - 2.96, p < 0. 00001) in osteolysis-bearing male mice. In rats, significant increase in paw withdrawal threshold is associated with the administration of ACEA and WIN55,212-2 (CB1/2-non-selective), JWH015 and AM1241 (CB2-selective) in osteolysis-bearing females (MD 8.18, 95%CI 6.14, 10.21, p < 0.00001), and treatment with AM1241 (CB2-selective) increased paw withdrawal thermal latency in males (mean difference [MD]: 3.94, 95%CI 2.13, 5.75, p < 0.0001), confirming the analgesic capabilities of CB1/2 ligands in rodents. In human, treatment of cancer patients with medical cannabis (standardized MD - 0.19, 95%CI - 0.35, - 0.02, p = 0.03) and the plant-derived delta-9-THC (20 mg) (MD 3.29, CI 2.24, 4.33, p < 0.00001) or its synthetic derivative NIB (4 mg) (MD 2.55, 95%CI 1.58, 3.51, p < 0.00001) are associated with reduction in pain intensity. Bioinformatics validation of KEGG, GO and MPO pathway, function and process enrichment analysis of mouse, rat and human data revealed that CB1 and CB2 receptors are enriched in a cocktail of nociceptive and sensory perception, inflammatory, immune-modulatory, and cancer pathways. Thus, we cautiously conclude that pharmacological modulators of CB1/2 receptors show promise in the treatment of cancer-induced bone pain, however further assessment of their effects on bone pain in genetically engineered animal models and cancer patients is warranted.


Assuntos
Dor do Câncer , Canabinoides , Neoplasias , Osteólise , Masculino , Ratos , Humanos , Camundongos , Animais , Receptores de Canabinoides , Osteólise/tratamento farmacológico , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Agonistas de Receptores de Canabinoides , Dor do Câncer/tratamento farmacológico , Dor do Câncer/etiologia , Neoplasias/tratamento farmacológico , Receptor CB2 de Canabinoide , Receptor CB1 de Canabinoide
9.
J Neuroimmunol ; 389: 578325, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432046

RESUMO

The use of synthetic cannabinoid receptor agonists (SCRAs) poses major psychiatric risks. We previously showed that repeated exposure to the prototypical SCRA JWH-018 induces alterations in dopamine (DA) transmission, abnormalities in the emotional state, and glial cell activation in the mesocorticolimbic DA circuits of rats. Despite growing evidence suggesting the relationship between substance use disorders (SUD) and neuroinflammation, little is known about the impact of SCRAs on the neuroimmune system. Here, we investigated whether repeated JWH-018 exposure altered neuroimmune signaling, which could be linked with previously reported central effects. Adult male Sprague-Dawley (SD) rats were exposed to JWH-018 (0.25 mg/kg, i.p.) for fourteen consecutive days, and the expression of cytokines, chemokines, and growth factors was measured seven days after treatment discontinuation in the striatum, cortex, and hippocampus. Moreover, microglial (ionized calcium-binding adaptor molecule 1, IBA-1) and astrocyte (glial fibrillary acidic protein, GFAP) activation markers were evaluated in the caudate-putamen (CPu). Repeated JWH-018 exposure induces a perturbation of neuroimmune signaling specifically in the striatum, as shown by increased levels of cytokines [interleukins (IL) -2, -4, -12p70, -13, interferon (IFN) γ], chemokines [macrophage inflammatory protein (MIP) -1α, -3α], and growth factors [macrophage colony-stimulating factor (M-CSF), vascular endothelial growth factor (VEGF)], together with increased IBA-1 and GFAP expression in the CPu. JWH-018 exposure induces persistant brain region-specific immune alterations up to seven days after drug discontinuation, which may contribute to the behavioral and neurochemical dysregulations in striatal areas that play a role in the reward-related processes that are frequently impaired in SUD.


Assuntos
Canabinoides , Indóis , Naftalenos , Fator A de Crescimento do Endotélio Vascular , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Canabinoides/metabolismo , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Encéfalo/metabolismo , Citocinas/metabolismo , Quimiocinas/metabolismo , Microglia/metabolismo , Dopamina/farmacologia
10.
Physiol Rep ; 12(4): e15947, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408761

RESUMO

The endocannabinoid system is widely expressed throughout the body and is comprised of receptors, ligands, and enzymes that maintain metabolic, immune, and reproductive homeostasis. Increasing interest in the endocannabinoid system has arisen due to these physiologic roles, policy changes leading to more widespread recreational use, and the therapeutic potential of Cannabis and phytocannabinoids. Rodents have been the primary preclinical model of focus due to their relative low cost, short gestational period, genetic manipulation strategies, and gold-standard behavioral tests. However, the potential for lack of clinical translation to non-human primates and humans is high as cross-species comparisons of the endocannabinoid system have not been evaluated. To bridge this gap in knowledge, we evaluate the relative gene expression of 14 canonical and extended endocannabinoid receptors in seven peripheral organs of C57/BL6 mice, Sprague-Dawley rats, and non-human primate rhesus macaques. Notably, we identify species- and organ-specific heterogeneity in endocannabinoid receptor distribution where there is surprisingly limited overlap among the preclinical models. Importantly, we determined there were no receptors with identical expression patterns among mice (three males and two females), rats (six females), and rhesus macaques (four males). Our findings demonstrate a critical, yet previously unappreciated, contributor to challenges of rigor and reproducibility in the cannabinoid field, which has implications in hampering progress in understanding the complexity of the endocannabinoid system and development of cannabinoid-based therapies.


Assuntos
Canabinoides , Endocanabinoides , Masculino , Feminino , Camundongos , Animais , Ratos , Endocanabinoides/metabolismo , Macaca mulatta/metabolismo , Reprodutibilidade dos Testes , Ratos Sprague-Dawley , Canabinoides/metabolismo , Canabinoides/uso terapêutico , Modelos Animais
11.
Vet Immunol Immunopathol ; 269: 110727, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330886

RESUMO

Dexamethasone (dex) is a potent glucocorticoid used to treat a variety of diseases. It is widely used in veterinary medicine in many species; for instance, in dogs, it can be used for emergent cases of anaphylaxis or trauma, management of immune-mediated hemolytic anemia or thrombocytopenia, certain cancers, allergic reactions, and topically for skin or eye inflammation. Dex is not without its side effects, especially when administered systemically, which might compromise compliance and effective treatment. Thus, adjunct therapies have been suggested to allow for decreased dex dosing and reduction in side effects while maintaining immunosuppressive efficacy. The goal of this study was to evaluate the potential for cannabinoids to serve as adjunct therapies for dex. Immune function was assessed in canine peripheral blood mononuclear cells (PBMCs) after treatment with dex with and without cannabidiol (CBD) and/or Δ9-tetrahydrocannabinol (THC). Dex suppressed IFN-γ protein secretion in a concentration-dependent manner and this suppression by low concentrations of dex was enhanced in the presence of CBD, THC, or the combination of CBD and THC. Similar effects were found with INFG and TNFA mRNA expression. These findings provide a rationale for using CBD or THC in vivo to reduce dex dosing and side effects.


Assuntos
Canabidiol , Canabinoides , Cães , Animais , Canabinoides/uso terapêutico , Dronabinol/uso terapêutico , Leucócitos Mononucleares , Canabidiol/efeitos adversos , Dexametasona/uso terapêutico
12.
Int Immunopharmacol ; 129: 111654, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38335658

RESUMO

Previous studies demonstrated that cannabinoids exhibit immunosuppressive effects in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). To ask questions about treatment timing and investigate mechanisms for immune suppression by the plant-derived cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), an in vitro peptide stimulation of naive splenocytes (SPLC) was developed to mimic T cell activation in EAE. The peptide was derived from the myelin oligodendrocyte glycoprotein (MOG) protein, which is one component of the myelin sheath. MOG peptide is typically used with an immune adjuvant to trigger MOG-reactive T cells that attack MOG-containing tissues, causing demyelination and clinical disease in EAE. To develop the in vitro model, naïve SPLC were stimulated with MOG peptide on day 0 and restimulated on day 4. Cytokine analyses revealed that CBD and THC suppressed MOG peptide-stimulated cytokine production. Flow cytometric analysis showed that intracellular cytokines could be detected in CD4+ and CD8+ T cells. To determine if intracellular calcium was altered in the cultures, cells were stimulated for 4 days to assess the state of the cells at the time of MOG peptide restimulation. Both cannabinoid-treated cultures had a smaller population of the calcium-positive population as compared to vehicle-treated cells. These results demonstrate the establishment of an in vitro model that can be used to mimic MOG-reactive T cell stimulation in vivo.


Assuntos
Canabidiol , Canabinoides , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Cálcio , Esclerose Múltipla/tratamento farmacológico , Glicoproteína Mielina-Oligodendrócito , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Citocinas/uso terapêutico , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos
13.
Anticancer Res ; 44(3): 895-900, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423660

RESUMO

Pain is a debilitating phenomenon that dramatically impairs the quality of life of patients. Many chronic conditions, including cancer, are associated with chronic pain. Despite pharmacological efforts that have been conducted, many patients suffering from cancer pain remain without treatment. To date, opioids are considered the preferred therapeutic choice for cancer-related pain management. Unfortunately, opioid treatment causes side effects and inefficiently relieves patients from pain, therefore alternative therapies have been considered, including Cannabis Sativa and cannabinoids. Accumulating evidence has highlighted that an increasing number of patients are choosing to use cannabis and cannabinoids for the management of their soothing and non-palliative cancer pain and other cancer-related symptoms. However, their clinical application must be supported by convincing and reproducible clinical trials. In this review, we provide an update on cannabinoid use for cancer pain management. Moreover, we tried to turn a light on the potential use of cannabis as a possible therapeutic option for cancer-related pain relief.


Assuntos
Dor do Câncer , Canabidiol , Canabinoides , Cannabis , Neoplasias , Humanos , Canabinoides/uso terapêutico , Dor do Câncer/tratamento farmacológico , Dor do Câncer/etiologia , Qualidade de Vida , Dor/tratamento farmacológico , Dor/etiologia , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Canabidiol/uso terapêutico
14.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338960

RESUMO

The lipid endocannabinoid system has recently emerged as a novel therapeutic target for several inflammatory and tissue-damaging diseases, including those affecting the cardiovascular system. The primary targets of cannabinoids are cannabinoid type 1 (CB1) and 2 (CB2) receptors. The CB2 receptor is expressed in the cardiomyocytes. While the pathological changes in the myocardium upregulate the CB2 receptor, genetic deletion of the receptor aggravates the changes. The CB2 receptor plays a crucial role in attenuating the advancement of myocardial infarction (MI)-associated pathological changes in the myocardium. Activation of CB2 receptors exerts cardioprotection in MI via numerous molecular pathways. For instance, delta-9-tetrahydrocannabinol attenuated the progression of MI via modulation of the CB2 receptor-dependent anti-inflammatory mechanisms, including suppression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1ß. Through similar mechanisms, natural and synthetic CB2 receptor ligands repair myocardial tissue damage. This review aims to offer an in-depth discussion on the ameliorative potential of CB2 receptors in myocardial injuries induced by a variety of pathogenic mechanisms. Further, the modulation of autophagy, TGF-ß/Smad3 signaling, MPTP opening, and ROS production are discussed. The molecular correlation of CB2 receptors with cardiac injury markers, such as troponin I, LDH1, and CK-MB, is explored. Special attention has been paid to novel insights into the potential therapeutic implications of CB2 receptor activation in MI.


Assuntos
Canabinoides , Infarto do Miocárdio , Receptor CB1 de Canabinoide , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabinoides/metabolismo , Endocanabinoides/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo , Dronabinol/farmacologia
15.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338649

RESUMO

The highly aggressive and invasive glioblastoma (GBM) tumour is the most malignant lesion among adult-type diffuse gliomas, representing the most common primary brain tumour in the neuro-oncology practice of adults. With a poor overall prognosis and strong resistance to treatment, this nervous system tumour requires new innovative treatment. GBM is a polymorphic tumour consisting of an array of stromal cells and various malignant cells contributing to tumour initiation, progression, and treatment response. Cannabinoids possess anti-cancer potencies against glioma cell lines and in animal models. To improve existing treatment, cannabinoids as functionalised ligands on nanocarriers were investigated as potential anti-cancer agents. The GBM tumour microenvironment is a multifaceted system consisting of resident or recruited immune cells, extracellular matrix components, tissue-resident cells, and soluble factors. The immune microenvironment accounts for a substantial volume of GBM tumours. The barriers to the treatment of glioblastoma with cannabinoids, such as crossing the blood-brain barrier and psychoactive and off-target side effects, can be alleviated with the use of nanocarrier drug delivery systems and functionalised ligands for improved specificity and targeting of pharmacological receptors and anti-cancer signalling pathways. This review has shown the presence of endocannabinoid receptors in the tumour microenvironment, which can be used as a potential unique target for specific drug delivery. Existing cannabinoid agents, studied previously, show anti-cancer potencies via signalling pathways associated with the hallmarks of cancer. The results of the review can be used to provide guidance in the design of future drug therapy for glioblastoma tumours.


Assuntos
Neoplasias Encefálicas , Canabinoides , Glioblastoma , Glioma , Animais , Glioblastoma/metabolismo , Endocanabinoides , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral , Canabinoides/farmacologia , Canabinoides/uso terapêutico
16.
J Basic Clin Physiol Pharmacol ; 35(1-2): 15-24, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38409768

RESUMO

INTRODUCTION: In view of limited treatment options (those too may fail) for Crohn's disease, cannabinoids have been tried as a therapeutic. However, their efficacy is not unequivocally established. This systematic review and meta-analysis was planned to pool data from randomised controlled trials (RCTs) evaluating effect of cannabinoids in Crohn's disease with an intention to take this uncertainty away. CONTENT: Following literature search in Medline, EMBASE, Scopus and Google Scholar databases, RCTs assessing the effect of cannabinoids on mild-to-moderate Crohn's disease in adults were included. Crohns' disease activity index (CDAI), QoL (Quality of life), number participants achieving full remission and serum CRP at eight weeks of treatment were the outcomes considered for meta-analysis. Quality of studies was assessed using Cochrane's RoB2 tool. Random effect model was applied for meta-analysis. Heterogeneity was assessed by Cochrane 'Q' statistics and I2 test. Sensitivity analysis was performed to identify the major contributor(s) to heterogeneity and assess robustness of the results. SUMMARY: Risk of bias for the four included studies varied from 'low' to 'some concern'. Overall effect estimate (SMD -0.92; 95 % CI -1.80, -0.03) indicated a statistically significant effect of cannabinoids as compared to control (p<0.05) on CDAI score. Effect of cannabinoids on rest of the outcome parameters was comparable to that of placebo. Magnitude of heterogeneity for different outcome parameters ranged from 'low' to 'substantial'. OUTLOOK: Cannabinoids were superior to placebo for favourably affecting the disease severity in terms of CDAI score. However, no statistically significant difference was found between the two for improving QoL, causing full disease-remission and reducing inflammatory markers. The results must be interpreted with caution in view of relatively high heterogeneity among the studies.


Assuntos
Canabinoides , Doença de Crohn , Adulto , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Doença de Crohn/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
17.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256042

RESUMO

Cannabinoids have incited scientific interest in different conditions, including malignancy, due to increased exposure to cannabis. Furthermore, cannabinoids are increasingly used to alleviate cancer-related symptoms. This review paper aims to clarify the recent findings on the relationship between cannabinoids and oral cancer, focusing on the molecular mechanisms that could link cannabinoids with oral cancer pathogenesis. In addition, we provide an overview of the current and future perspectives on the management of oral cancer patients using cannabinoid compounds. Epidemiological data on cannabis use and oral cancer development are conflicting. However, in vitro studies assessing the effects of cannabinoids on oral cancer cells have unveiled promising anti-cancer features, including apoptosis and inhibition of cell proliferation. Downregulation of various signaling pathways with anti-cancer effects has been identified in experimental models of oral cancer cells exposed to cannabinoids. Furthermore, in some countries, several synthetic or phytocannabinoids have been approved as medical adjuvants for the management of cancer patients undergoing chemoradiotherapy. Cannabinoids may improve overall well-being by relieving anxiety, depression, pain, and nausea. In conclusion, the link between cannabinoid compounds and oral cancer is complex, and further research is necessary to elucidate the potential risks or their protective impact on oral cancer.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Neoplasias Bucais , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Neoplasias Bucais/tratamento farmacológico , Agonistas de Receptores de Canabinoides
18.
Expert Opin Emerg Drugs ; 29(1): 65-79, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38226593

RESUMO

INTRODUCTION: Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting approximately 3% of school-age children. The core symptoms are deficits in social communication and restricted and repetitive patterns of behavior. Associated problems in cognition, language, behavior, sleep and mood are prevalent. Currently, no established pharmacological treatment exists for core ASD symptoms. Risperidone and aripiprazole are used to manage associated irritability, but their effectiveness is limited and adverse events are common. AREAS COVERED: This mini-review summarizes existing scientific literature and ongoing clinical trials concerning cannabinoid treatment for ASD. Uncontrolled case series have documented improvements in both core ASD symptoms and related behavioral challenges in children treated with cannabis extracts rich in cannabidiol (CBD). Placebo-controlled studies involving CBD-rich cannabis extracts and/or pure CBD in children with ASD have demonstrated mixed efficacy results. A similar outcome was observed in a placebo-controlled study of pure CBD addressing social avoidance in Fragile X syndrome. Importantly, these studies have shown relatively high safety and tolerability. EXPERT OPINION: While current clinical data suggest the potential of CBD and CBD-rich cannabis extract in managing core and behavioral deficits in ASD, it is prudent to await the results of ongoing placebo-controlled trials before considering CBD treatment for ASD.


Assuntos
Transtorno do Espectro Autista , Canabinoides , Criança , Humanos , Aripiprazol/efeitos adversos , Transtorno do Espectro Autista/tratamento farmacológico , Canabidiol/uso terapêutico , Canabinoides/uso terapêutico , Humor Irritável , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
BMC Cancer ; 24(1): 83, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225549

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common adult malignant brain tumour, with an incidence of 5 per 100,000 per year in England. Patients with tumours showing O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation represent around 40% of newly diagnosed GBM. Relapse/tumour recurrence is inevitable. There is no agreed standard treatment for patients with GBM, therefore, it is aimed at delaying further tumour progression and maintaining health-related quality of life (HRQoL). Limited clinical trial data exist using cannabinoids in combination with temozolomide (TMZ) in this setting, but early phase data demonstrate prolonged overall survival compared to TMZ alone, with few additional side effects. Jazz Pharmaceuticals (previously GW Pharma Ltd.) have developed nabiximols (trade name Sativex®), an oromucosal spray containing a blend of cannabis plant extracts, that we aim to assess for preliminary efficacy in patients with recurrent GBM. METHODS: ARISTOCRAT is a phase II, multi-centre, double-blind, placebo-controlled, randomised trial to assess cannabinoids in patients with recurrent MGMT methylated GBM who are suitable for treatment with TMZ. Patients who have relapsed ≥ 3 months after completion of initial first-line treatment will be randomised 2:1 to receive either nabiximols or placebo in combination with TMZ. The primary outcome is overall survival time defined as the time in whole days from the date of randomisation to the date of death from any cause. Secondary outcomes include overall survival at 12 months, progression-free survival time, HRQoL (using patient reported outcomes from QLQ-C30, QLQ-BN20 and EQ-5D-5L questionnaires), and adverse events. DISCUSSION: Patients with recurrent MGMT promoter methylated GBM represent a relatively good prognosis sub-group of patients with GBM. However, their median survival remains poor and, therefore, more effective treatments are needed. The phase II design of this trial was chosen, rather than phase III, due to the lack of data currently available on cannabinoid efficacy in this setting. A randomised, double-blind, placebo-controlled trial will ensure an unbiased robust evaluation of the treatment and will allow potential expansion of recruitment into a phase III trial should the emerging phase II results warrant this development. TRIAL REGISTRATION: ISRCTN: 11460478. CLINICALTRIALS: Gov: NCT05629702.


Assuntos
Neoplasias Encefálicas , Canabinoides , Glioblastoma , Adulto , Humanos , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Canabinoides/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Estudos Multicêntricos como Assunto , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Temozolomida/uso terapêutico
20.
J Affect Disord ; 348: 333-344, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171418

RESUMO

BACKGROUND: The endocannabinoid system plays a crucial role in regulating mood, but the specific involvement of cannabinoid receptor type 2 (CB2R) in depression remains poorly understood. Similarly, the mechanisms by which electroacupuncture (EA) provides therapeutic benefits for depression are not clearly defined. This research aims to explore the function of CB2R in depression and examine if the therapeutic effects of EA are associated with the hippocampal CB2R system. METHODS: Mice experiencing social defeat stress (SDS) were used to model depression and anxiety behaviors. We quantified hippocampal CB2R and N-arachidonoylethanolamide (AEA) levels. The efficacy of a CB2R agonist, JWH133, in mitigating SDS-induced behaviors was evaluated. Additionally, EA's impact on CB2R and AEA was assessed, along with the influence of CB2R antagonist AM630 on EA's antidepressant effects. RESULTS: SDS led to depressive and anxiety-like behaviors, with corresponding decreases in hippocampal CB2R and AEA. Treatment with JWH133 ameliorated these behaviors. EA treatment resulted in increased CB2R and AEA levels, while AM630 blocked these antidepressant effects. LIMITATIONS: The study mainly focused on the SDS model, which may not entirely reflect other depression models. Besides, further investigation is needed to understand the precise mechanisms by which CB2R and AEA contribute to EA's effects. CONCLUSIONS: The study suggests hippocampal downregulation of CB2R and AEA contributes to depression. Upregulation of CB2R and AEA in response to EA suggests their involvement in EA's antidepressant effects. These findings provide insights into the role of the hippocampal CB2R system in depression and the potential mechanisms underlying EA's therapeutic effects.


Assuntos
Canabinoides , Depressão , Camundongos , Animais , Receptores de Canabinoides , Depressão/tratamento farmacológico , Derrota Social , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Antidepressivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...